168 research outputs found

    Physical Therapy Considerations for Chronic Kidney Disease and Secondary Sarcopenia

    Get PDF
    Chronic kidney disease (CKD) is a progressive condition that may negatively affect musculoskeletal health. These comorbidities may include malnutrition, osteoporosis, and decreased lean body mass. Secondary sarcopenia due to CKD may be associated with mobility limitations and elevated fall risk. Physical therapists are well-positioned among the health care team to screen for secondary sarcopenia in those with CKD and for the treatment of musculoskeletal comorbid conditions that may affect functional performance. Given the consequences of both low muscle mass and low bone mineral density, appropriate and timely physical therapy is important for fall risk assessment and intervention to minimize the susceptibility to bone fracture. While strength training has been studied less frequently than aerobic training for the management of secondary CKD conditions, evidence suggests that this patient population benefits from participation in strength training programs. However, the provision of a formal exercise prescription by a health care professional, along with formal implementation of an exercise program, may need to be more fully integrated into the standard plan of care for individuals with CKD

    Eccentric Exercise: Adaptations and Applications for Health and Performance

    Get PDF
    The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled “Eccentric Exercise: Adaptations and Applications for Health and Performance”. The major themes from the contributing authors include the need to place greater attention on eccentric exercise mode selection based on training goals and individual fitness level, optimal approaches to implementing eccentric resistance exercise for therapeutic purposes, factors that affect the use of eccentric exercise across the lifespan, and general recommendations to integrate eccentric exercise in athletic training regimens. The authors propose that movement velocity and the absorption or recovery of kinetic energy are critical components of eccentric exercise programming. Regarding the therapeutic use of eccentric resistance training, patient-level factors regarding condition severity, fitness level, and stage of rehabilitation should govern the plan of care. In athletic populations, use of eccentric exercise may improve movement competency and promote improved safety and performance of sport-specific tasks. Eccentric resistance training is a viable option for youth, young adults, and older adults when the exercise prescription appropriately addresses program goals, exercise tolerability, and compliance. Despite the benefits of eccentric exercise, several key questions remain unanswered regarding its application underscoring the need for further investigation

    Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity

    Get PDF
    Background. Quantitative diagnostic ultrasound imaging has been proposed as a method of estimating muscle quality using measures of echogenicity. The Rectangular Marquee Tool (RMT) and the Free Hand Tool (FHT) are two types of editing features used in Photoshop and ImageJ for determining a region of interest (ROI) within an ultrasound image. The primary objective of this study is to determine the intrarater and interrater reliability of Photoshop and ImageJ for the estimate of muscle tissue echogenicity in older adults via grayscale histogram analysis. The secondary objective is to compare the mean grayscale values obtained using both the RMT and FHT methods across both image analysis platforms. Methods. This cross-sectional observational study features 18 community-dwelling men (age = 61.5 ± 2.32 years). Longitudinal views of the rectus femoris were captured using B-mode ultrasound. The ROI for each scan was selected by 2 examiners using the RMT and FHT methods from each software program. Their reliability is assessed using intraclass correlation coefficients (ICCs) and the standard error of the measurement (SEM). Measurement agreement for these values is depicted using Bland-Altman plots. A paired t-test is used to determine mean differences in echogenicity expressed as grayscale values using the RMT and FHT methods to select the post-image acquisition ROI. The degree of association among ROI selection methods and image analysis platforms is analyzed using the coefficient of determination (R2). Results. The raters demonstrated excellent intrarater and interrater reliability using the RMT and FHT methods across both platforms (lower bound 95% CI ICC = .97–.99, p \u3c .001). Mean differences between the echogenicity estimates obtained with the RMT and FHT methods was .87 grayscale levels (95% CI [.54–1.21], p \u3c .0001) using data obtained with both programs. The SEM for Photoshop was .97 and 1.05 grayscale levels when using the RMT and FHT ROI selection methods, respectively. Comparatively, the SEM values were .72 and .81 grayscale levels, respectively, when using the RMT and FHT ROI selection methods in ImageJ. Uniform coefficients of determination (R2 = .96–.99, p \u3c .001) indicate strong positive associations among the grayscale histogram analysis measurement conditions independent of the ROI selection methods and imaging platform. Conclusion. Our method for evaluating muscle echogenicity demonstrated a high degree of intrarater and interrater reliability using both the RMT and FHT methods across 2 common image analysis platforms. The minimal measurement error exhibited by the examiners demonstrates that the ROI selection methods used with Photoshop and ImageJ are suitable for the post-acquisition image analysis of tissue echogenicity in older adults

    Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI

    Get PDF
    Background Motion capture virtual reality-based rehabilitation has become more common. However, therapists face challenges to the implementation of virtual reality (VR) in clinical settings. Use of motion capture technology such as the Xbox Kinect may provide a useful rehabilitation tool for the treatment of postural instability and cardiovascular deconditioning in individuals with chronic severe traumatic brain injury (TBI). The primary purpose of this study was to evaluate the effects of a Kinect-based VR intervention using commercially available motion capture games on balance outcomes for an individual with chronic TBI. The secondary purpose was to assess the feasibility of this intervention for eliciting cardiovascular adaptations. Methods A single system experimental design (n = 1) was utilized, which included baseline, intervention, and retention phases. Repeated measures were used to evaluate the effects of an 8-week supervised exercise intervention using two Xbox One Kinect games. Balance was characterized using the dynamic gait index (DGI), functional reach test (FRT), and Limits of Stability (LOS) test on the NeuroCom Balance Master. The LOS assesses end-point excursion (EPE), maximal excursion (MXE), and directional control (DCL) during weight-shifting tasks. Cardiovascular and activity measures were characterized by heart rate at the end of exercise (HRe), total gameplay time (TAT), and time spent in a therapeutic heart rate (TTR) during the Kinect intervention. Chi-square and ANOVA testing were used to analyze the data. Results Dynamic balance, characterized by the DGI, increased during the intervention phase χ 2 (1, N = 12) = 12, p = .001. Static balance, characterized by the FRT showed no significant changes. The EPE increased during the intervention phase in the backward direction χ 2 (1, N = 12) = 5.6, p = .02, and notable improvements of DCL were demonstrated in all directions. HRe (F (2,174) = 29.65, p = \u3c .001) and time in a TTR (F (2, 12) = 4.19, p = .04) decreased over the course of the intervention phase. Conclusions Use of a supervised Kinect-based program that incorporated commercial games improved dynamic balance for an individual post severe TBI. Additionally, moderate cardiovascular activity was achieved through motion capture gaming. Further studies appear warranted to determine the potential therapeutic utility of commercial VR games in this patient population. Trial registration Clinicaltrial.gov ID - NCT0288928

    The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report

    Get PDF
    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field

    Eccentric Exercise Program Design: A Periodization Model for Rehabilitation Applications

    Get PDF
    The applied use of eccentric muscle actions for physical rehabilitation may utilize the framework of periodization. This approach may facilitate the safe introduction of eccentric exercise and appropriate management of the workload progression. The purpose of this data-driven Hypothesis and Theory paper is to present a periodization model for isokinetic eccentric strengthening of older adults in an outpatient rehabilitation setting. Exemplar and group data are used to describe the initial eccentric exercise prescription, structured familiarization procedures, workload progression algorithm, and feasibility of the exercise regimen. Twenty-four men (61.8 ±6.3 years of age) completed a 12-week isokinetic eccentric strengthening regimen involving the knee extensors. Feasibility and safety of the regimen was evaluated using serial visual analog scale (VAS, 0-10) values for self-reported pain, and examining changes in the magnitude of mean eccentric power as a function of movement velocity. Motor learning associated with the familiarization sessions was characterized through torque-time curve analysis. Total work was analyzed to identify relative training plateaus or diminished exercise capacity during the progressive phase of the macrocycle. Variability in the mean repetition interval decreased from 68% to 12% during the familiarization phase of the macrocycle. The mean VAS values were 2.9 ±2.7 at the start of the regimen and 2.6 ±2.9 following 12 weeks of eccentric strength training. During the progressive phase of the macrocycle, exercise workload increased from 70% of the estimated eccentric peak torque to 141% and total work increased by 185% during this training phase. The slope of the total work performed across the progressive phase of the macrocycle ranged from -5.5 to 29.6, with the lowest slope values occurring during microcycles 8 and 11. Also, mean power generation increased by 25% when eccentric isokinetic velocity increased from 60 deg s-1 to 90 deg s-1 while maintaining the same workload target. The periodization model used in this study for eccentric exercise familiarization and workload progression was feasible and safe to implement within an outpatient rehabilitation setting. Cyclic use of higher eccentric movement velocities, and the addition of active recovery periods, are featured in the proposed theoretical periodization model for isokinetic eccentric strengthening

    Use of the Adult Myopathy Assessment Tool as a predictor of functional abilities in people with multiple sclerosis

    Get PDF
    Background: People with multiple sclerosis (PwMS) are at greater risk for decreased muscle performance which may lead to decreased functional abilities. The Kurtzke Expanded Disability Status Scale (EDSS) is commonly used as a disability status rating scale in PwMS. Nevertheless, the EDSS is largely comprised of neurological tests and may not best reflect functional performance. A functional battery such as The Adult Myopathy Assessment Tool (AMAT) may better reflect functional performance. The AMAT was designed to assess both functional strength and endurance in clinical settings. However, the AMAT has not been validated for the assessment of PwMS. Objective: The purpose of the study was to determine the comparative association of the AMAT and EDSS with measures of strength, fatigability, and functional performance. Methods: Twenty-nine people (mean age 48.6 ±11.2), with a history of MS (EDSS \u3c 7.0) were recruited. Participants completed functional testing (5 times sit to stand and gait speed) and an assessment of disability and functional status using the EDSS and AMAT, respectively. Muscle performance was assessed via a 60 s maximal volitional isometric contraction (MVIC) of the knee extensors using an isokinetic dynamometer, and expressed as fatigability (exhaustion time to 60% of MVIC), peak torque, and peak torque scaled to body weight. Results:The participants exhibited moderate levels of disability (EDSS, 3.6 ±1.4) and function (AMAT total score, 36.1 ±7.6; AMAT function subscale, 18.2 ±3.3). Peak force was 70.1 kg ±22.0 kg, exhaustion time was 38.4 s ±17.4 s, gait speed was 1.3 m/s ±0.3 m/s, and five time sit to stand was 11.4 s ±4.1 s. The AMAT function subscale was associated with scaled peak torque (r=0.426, p=.021), gait speed (r=0.825, p=0.00), and 5 time sit to stand (r=-0.632, p Conclusions: The AMAT was more strongly associated with scaled peak torque and functional measures in comparison to the EDSS. This may reflect the observation that relative strength is a better predictor of functional abilities than unadjusted strength measures. Whereas, the stronger association of the EDSS with fatigability may be explained by the pyramidal systems measures within the tool and the well-known association of MS-related fatigue with disability. Based on the results of the study, we suggest clinicians administer the AMAT in addition to the EDSS, to gain insight into functional impairments and assist with formulating a comprehensive plan of care

    Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    Get PDF
    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance.Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ±20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups.Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = .61, p \u3c .001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = .85, p \u3c .001). Scaled peak force was associated with age and echogenicity (adj. R2 = .53, p \u3c .001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p \u3c .05).Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample
    • …
    corecore